More Information

= http://opensource.adobe.com

= http://stepanovpapers.com
= Specifically:

» http://www.stepanovpapers.com/eop/lecture all.pdf

= http://www.stepanovpapers.com/notes.pdf

= http://www.stepanovpapers.com/PAM.pdf

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Concept-Based
Runtime Polymorphism

Sean Parent

Principal Scientist

May 17, 2007

Mat's Talk

2007 Adobe Systems Incorporated. All Rights Reserved.

Runtime Polymorphic Generic Programming—Mixing
Objects and Concepts in ConceptC++

Mat Marcus', Jaakko Jirvi®, and Sean Parent!

¥ Texas ALM U mlry

Abstract, A loag-held goal of software enpiscersg has bees the ability 1o wreat
software libeares as recsbale components that can be composed with program.
specific cade to produce appl The obje paruligm
offers mechanisms o write librarics that are ope for exteasion, bet it tends to
impaonse intmisive interface roquirements on the types thig will b suppbeed 10 the
library. The geaenc programmieg paradigm has seen much success i Co-, panly
doe 10 the fact that libranes remain opea to exteasion withow: imposing e need
10 iegrusively aherit from panticalar abstract base classes. However, the static
polymorphism that is a staple ur pmpm—ﬁng with u—dam and overloads in
Ce=, limits peneric in jon domains where
moee dysamic palymorphism o rrquma. In this paper we presert the poly<>
libracy, & pert of Adobe System's opes souece Steary ASL. that combines the
pect-aricated and gorenc paradig=s to provide non-i

vatho-bamod, runti ism, Usape, impact on design, wd

implementation techraques are duc\usd.

1 Introduction

Successful development of 'd'usl h.rg: scale mﬁ.wr:e applications dqxnds on upon
the shility to combine i with i
library modules from a vatiety oé' su.n:e! with a reasonzble amount of :;pln:alxm
specific glue code. To support this activity, modules must remzin open for extension hl
closed for medification [18]. Object-oriented p ing and generic p
are the two main paradigms availsble for m:l.ng such modules in C++,
In object-oriented programming, libraries typically specify that the types supplied to
the libeury must be derived from = commen shstract base class, providing implementa.
tions for 2 collection of pure virtual functions. The libeary knows caly about the shstract
base class interface, but can be “extended” to work with new user types derived from
the abstract interface. That is, variability is achieved through differing implementations
of the virtuzl functions in the derived classes. This is how object-criented programming
supperts modules that are closed for medification, yet remain open for extension. One
strength of this paradigm is its support for varying the types supplied to 2 module 2t
runtime. Composabélity of modules is limited, however, since independently produced
modules generzlly do not agree on commea abstract interfaces from which supplied
types must inherit.

A

Adobe

Abstract

= Requirement of Polymorphism

= Compile Time / Runtime Dichotomy

= The Semantics of Inheritance
= Modeling
= Refinement

= Algorithm Refinement
= Problems with Inheritance
= Intrusive
= Reference Semantics
= Object Management

= Naming Variance

2006 Adobe Systems Incorporated. All Rights Reserved.

The Poly Library
Goals
The Basics
Usage in Adobe Source Libraries

Future Directions

Al

Adobe

Requirement of Polymorphism
= Apply an algorithm to similar types

= Apply an algorithm to a heterogeneous collection of similar types

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Requirement of Polymorphism

= Apply an algorithm to similar types

= Apply an algorithm to a heterogeneous collection of similar types

= Similar types are types which satisfy they same semantic requirements

Types are similar if they model the same concept

Al

6
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Requirement of Polymorphism
= Apply an algorithm to any type which models a given concept

= Apply an algorithm to a collection of types which model the same concept

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Requirement of Polymorphism

= Apply an algorithm to any type which models a given concept
swap(X, y¥); // where X and y are of type T which models Regular

= Apply an algorithm to a collection of types which model the same concept

vector<any model of Regular>v = { 10, "Hello", true };
find(v.begin(), v.end(), "Hello");

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Compile Time / Runtime Dichotomy

= Apply an algorithm to any type which models a given concept

= Templates work when T is known at compile time - OOP techniques if T is not known

= Apply an algorithm to a collection of types which model the same concept

= Types cannot be fixed at compile time - OOP techniques required

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Compile Time / Runtime Dichotomy

= Apply an algorithm to any type which models a given concept
swap(X, y); // works for object pointers too!

= Apply an algorithm to a collection of types which model the same concept

vector<object*> v = { new integer(10), new string("Hello"), new boolean(true) };
find_if(v.begin(), v.end(), bind(&object::equals, new string("Hello"), _1));

vector<int>v={1,2,3};
find(v.begin(), v.end(), 2);

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Semantics of Inheritance - Concept Definition

= A virtual base class defines a concept:

class object {
public:
virtual ~object() = 0;
virtual type_infoé& get_class() const = O;
virtual object* clone() const = O;
virtual bool equals(const object*) const = O;

1

= This base object type corresponds with the Regular concept

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Semantics of Inheritance - Modeling

= We define a model with inheritance:

class boolean : public object {
public:
~object() { };
type_info get_class() const { return typeid(bool); }
integer* clone() const { return new boolean(member); }
bool equals(const object* x) const
{ return x.get_class() == get_class()
& & dynamic_cast<const boolean *>(x)->member == member; }
private:
bool member;

1

= "isa"means T is a model of concept C

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Semantics of Inheritance - Refinement

= We use virtual inheritance as refinement:

class incrementable : public virtual object {
public:

virtual void next() const = O;

1

class fast_incrementable : public virtual incrementable {
public:

virtual void next(size_t n) const = O;

1

2007 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

The Semantics of Inheritance - Algorithms Refinement

= We can dispatch at runtime based on the concept category:

void advance(fast_incrementable* x, size_t count=1) {
x->next();

}

void advance(incrementable* x, size_t count = 1) {
fast_incrementable* derived = dynamic_cast<fast_incrementable*>x;
if (derived) advance(derived);
else while (count != 0) x->next();

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Problems with Inheritance - Intrusive

= Inheritance requires modification or wrapping of a class
= Wrapping requires an additional level of indirection through a virtual table

= The requirements of an object come from algorithms

= imposing requirements of use on the object entangles the object with the application

Al

15
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Problems with Inheritance - Reference Semantics

circle

shape

shape

shape

2007 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe

Problems with Inheritance - Reference Semantics

shape*

shape*

shape*

circle

2007 Adobe Systems Incorporated. All Rights Reserved.

rectangle

Al

Adobe

Problems with Inheritance - Reference Semantics

= A polymorphic use of an object imposes the burden of reference semantics
on all users of the class

= Memory management
= reference counted pointers

= garbage collection

= Memory management only manages the destruction of the shared object

= All mutable operations on the object must be managed

= Threading further complicates the management issue

= Shared writable references make reasoning about code difficult

"A shared pointer is as good as a global variable."

Al

18
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Problems with Inheritance - Reference Semantics

VA4

vector<shape*> s2(sl);
reverse(sl.begin(), sl.end());

(*find_1if(sl.begin(), sl.end(), bind(&object::equals,
->move(point(10, 20));

shape™

shape”

shape”

_SAS

rectangle

2007 Adobe Systems Incorporated. All Rights Reserved.

new circle(12), _1)))
shape* shape* shape*
circle

Al

Adobe

Problems with Inheritance - Naming Variance

= Compare two non-polymorphic value
a==b

= Compare two polymorphic values
a->equals(b)

= The difference in naming requires separate libraries (or constant adaptation)
to deal with the two cases.

= |f aand b are polymorphic then the same name has different semantics
a==Db //is a the same instance as b (&a == &Db)

= Using the same name with different semantics (likely in the same context)
causes confusion

Al

20
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Goals

= Shift the burden of polymorphism to the point of use (non-intrusive)
= Encapsulate the object management (no GC required, thread safe)

= Normalize naming (polymorphic objects work correctly with STL)

= Equal or better efficiency than than traditional inheritance

= Equal or better expressiveness than traditional inheritance

Can we build complete applications were everything exists in a container?

) Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - The Basics

shape shape
i i
local : local :
1 \ 1 \
circle rectangle

i Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Basics

= There exists a transition point from having complete type information to
having limited type information

= We refer to this as the virtualization boundary

= We can leverage type erasure to capture type properties carry then across
the boundary

) Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Basics

class poly_copyable {
struct concept {
virtual ~concept() { }
virtual concept* clone() const = O;

1

template <typename T>
struct model : concept {
model(const T X) : instance(x) { };
concept* clone() const { return new model(instance); }

T instance;

3

concept* object;
public:
template<typename T>
poly_copyable(const T& x) : object(new model<T>(x)) { }

poly_copyable(const poly_copyable& x) : object(x.object->clone()) { }
“poly_copyable() { delete object; }

b
FA\

24
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Basics

int main()

{
poly_copyable x(10); // Capture copy-ctor here

poly_copyabley =x; // Use copy-ctor here
}

= The overhead is exactly that of traditional inheritance
= Overhead is only paid for why polymorphism is required

i} Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Usage in Adobe Source Libraries

= ASL provides a few special purpose poly types:
= any_regular_t
= All operations on the Concept Regular including O(1), non-throwing swap()
= Small object optimization (small objects with non-throwing default ctor stored locally)
= Leverages type promotion as well as virtualization
= Most numeric types promote to double
= char* promotes to std::string

= GIL makes use of an any_image<> type which can be parametersed with a set of specific
types for which optimal algorithms can be instantiated

= Thereis an any_iterator library which experiments with concept refinement and
polymorphism

= The poly library incorporates many of the above ideas into a single library

Al

26
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Usage in Adobe Source Libraries

= The poly library allows client specified concept descriptions

= Concept descriptions can inherit from each other to allow refinement

= poly<Placable>, poly<View>, poly<Controller> are used to connect
widgets to the property model and layout libraries - each of these are

refinements of poly<Regular> which will soon replace any_regular._t.

= The any_regular_t is used as the "dynamic type" for the property model
library

= Allowing the client to create property models with any regular type, including using the
type in the property model language

i Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Usage in Adobe Source Libraries

struct checkbox_t

{
typedef any_regular_t model_type;
typedef boost::function<void (const model_typeé&e)> setter_type;

checkbox_t(const std::stringd name,
const any_regular_t& true_value,
const any_regular_té& false_value,
theme_t theme,
const std::stringé& alt_text);

void measure(extents_té& result);

void place(const place_data_t& place_data);
void display(const any_regular_t& value);
void enable(bool make_enabled);

void monitor(setter_type proc);

1

bool operator==(const checkbox_té&, const checkbox_t&e);

} Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

The Poly Library - Future Directions

= Learning and exploring how to assemble systems with value semantics
= We do have pointers under the hood
= References between objects are managed with in a container that holds the objects
= All data structures are explicit
= We are collaborating with Texas A&M and others to explore new techniques
and understand the theoretical limitations

= Techniques such as runtime compilation (compile when the types are known) is an
interesting future direction

= You can find more information on our website
. Keep on eye on the Papers and Presentations
section of our wiki for current and upcoming papers.

§ Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

Better by Adobe>

. QO

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe

