
2007 Adobe Systems Incorporated. All Rights Reserved.
1

More Information

http://opensource.adobe.com

http://stepanovpapers.com

Specifically:

http://www.stepanovpapers.com/eop/lecture_all.pdf

http://www.stepanovpapers.com/notes.pdf

http://www.stepanovpapers.com/PAM.pdf

2
2007 Adobe Systems Incorporated. All Rights Reserved.

Concept-Based
Runtime Polymorphism

Sean Parent

Principal Scientist

May 17, 2007

2007 Adobe Systems Incorporated. All Rights Reserved.
3

Mat's Talk

4
2006 Adobe Systems Incorporated. All Rights Reserved.

Abstract

Requirement of Polymorphism

Compile Time / Runtime Dichotomy

The Semantics of Inheritance

Modeling

Refinement

Algorithm Refinement

Problems with Inheritance

Intrusive

Reference Semantics

Object Management

Naming Variance

The Poly Library

Goals

The Basics

Usage in Adobe Source Libraries

Future Directions

2007 Adobe Systems Incorporated. All Rights Reserved.
5

Requirement of Polymorphism

Apply an algorithm to similar types

Apply an algorithm to a heterogeneous collection of similar types

2007 Adobe Systems Incorporated. All Rights Reserved.
6

Requirement of Polymorphism

Apply an algorithm to similar types

Apply an algorithm to a heterogeneous collection of similar types

Similar types are types which satisfy they same semantic requirements

Types are similar if they model the same concept

2007 Adobe Systems Incorporated. All Rights Reserved.
7

Requirement of Polymorphism

Apply an algorithm to any type which models a given concept

Apply an algorithm to a collection of types which model the same concept

2007 Adobe Systems Incorporated. All Rights Reserved.
8

Requirement of Polymorphism

Apply an algorithm to any type which models a given concept

swap(x, y); // where x and y are of type T which models Regular

Apply an algorithm to a collection of types which model the same concept

vector<any model of Regular> v = { 10, "Hello", true };

find(v.begin(), v.end(), "Hello");

2007 Adobe Systems Incorporated. All Rights Reserved.
9

Compile Time / Runtime Dichotomy

Apply an algorithm to any type which models a given concept
Templates work when T is known at compile time - OOP techniques if T is not known

Apply an algorithm to a collection of types which model the same concept
Types cannot be fixed at compile time - OOP techniques required

2007 Adobe Systems Incorporated. All Rights Reserved.
10

Compile Time / Runtime Dichotomy

Apply an algorithm to any type which models a given concept

swap(x, y); // works for object pointers too!

Apply an algorithm to a collection of types which model the same concept

vector<object*> v = { new integer(10), new string("Hello"), new boolean(true) };

find_if(v.begin(), v.end(), bind(&object::equals, new string("Hello"), _1));

vector <int> v = { 1, 2, 3 };

find(v.begin(), v.end(), 2);

2007 Adobe Systems Incorporated. All Rights Reserved.
11

The Semantics of Inheritance - Concept Definition

A virtual base class defines a concept:

class object {
public:
 virtual ~object() = 0;

virtual type_info& get_class() const = 0;
virtual object* clone() const = 0;
virtual bool equals(const object*) const = 0;

};

This base object type corresponds with the Regular concept

2007 Adobe Systems Incorporated. All Rights Reserved.
12

The Semantics of Inheritance - Modeling

We define a model with inheritance:

class boolean : public object {
public:

~object() { };
type_info get_class() const { return typeid(bool); }
integer* clone() const { return new boolean(member); }
bool equals(const object* x) const
{ return x.get_class() == get_class()

&& dynamic_cast<const boolean*>(x)->member == member; }
private:

bool member;
};

"is a" means T is a model of concept C

2007 Adobe Systems Incorporated. All Rights Reserved.
13

The Semantics of Inheritance - Refinement

We use virtual inheritance as refinement:

class incrementable : public virtual object {
public:

virtual void next() const = 0;
};

class fast_incrementable : public virtual incrementable {
public:

virtual void next(size_t n) const = 0;
};

2007 Adobe Systems Incorporated. All Rights Reserved.
14

The Semantics of Inheritance - Algorithms Refinement

We can dispatch at runtime based on the concept category:

void advance(fast_incrementable* x, size_t count = 1) {
x->next();

}

void advance(incrementable* x, size_t count = 1) {
fast_incrementable* derived = dynamic_cast<fast_incrementable*>x;
if (derived) advance(derived);
else while (count != 0) x->next();

}

2007 Adobe Systems Incorporated. All Rights Reserved.
15

Problems with Inheritance - Intrusive

Inheritance requires modification or wrapping of a class

Wrapping requires an additional level of indirection through a virtual table

The requirements of an object come from algorithms

imposing requirements of use on the object entangles the object with the application

2007 Adobe Systems Incorporated. All Rights Reserved.
16

Problems with Inheritance - Reference Semantics

2007 Adobe Systems Incorporated. All Rights Reserved.
17

Problems with Inheritance - Reference Semantics

2007 Adobe Systems Incorporated. All Rights Reserved.
18

Problems with Inheritance - Reference Semantics

A polymorphic use of an object imposes the burden of reference semantics
on all users of the class

Memory management

reference counted pointers

garbage collection

Memory management only manages the destruction of the shared object

All mutable operations on the object must be managed

Threading further complicates the management issue

Shared writable references make reasoning about code difficult

"A shared pointer is as good as a global variable."

2007 Adobe Systems Incorporated. All Rights Reserved.
19

Problems with Inheritance - Reference Semantics

/*...*/
vector<shape*> s2(s1);
reverse(s1.begin(), s1.end());

(*find_if(s1.begin(), s1.end(), bind(&object::equals, new circle(10), _1)))
->move(point(10, 20));

2007 Adobe Systems Incorporated. All Rights Reserved.
20

Problems with Inheritance - Naming Variance

Compare two non-polymorphic value

a == b

Compare two polymorphic values

a->equals(b)

The difference in naming requires separate libraries (or constant adaptation)
to deal with the two cases.

If a and b are polymorphic then the same name has different semantics

a == b // is a the same instance as b (&a == &b)

Using the same name with different semantics (likely in the same context)
causes confusion

2007 Adobe Systems Incorporated. All Rights Reserved.
21

The Poly Library - Goals

Shift the burden of polymorphism to the point of use (non-intrusive)

Encapsulate the object management (no GC required, thread safe)

Normalize naming (polymorphic objects work correctly with STL)

Equal or better efficiency than than traditional inheritance

Equal or better expressiveness than traditional inheritance

Can we build complete applications were everything exists in a container?

2007 Adobe Systems Incorporated. All Rights Reserved.
22

The Poly Library - The Basics

2007 Adobe Systems Incorporated. All Rights Reserved.
23

The Poly Library - Basics

There exists a transition point from having complete type information to
having limited type information

We refer to this as the virtualization boundary

We can leverage type erasure to capture type properties carry then across
the boundary

2007 Adobe Systems Incorporated. All Rights Reserved.
24

The Poly Library - Basics

class poly_copyable {
struct concept {

virtual ~concept() { }
virtual concept* clone() const = 0;

};

template <typename T>
struct model : concept {

model(const T x) : instance(x) { };
concept* clone() const { return new model(instance); }
T instance;

};

concept* object;
 public:

template<typename T>
poly_copyable(const T& x) : object(new model<T>(x)) { }

 poly_copyable(const poly_copyable& x) : object(x.object->clone()) { }
~poly_copyable() { delete object; }

};

2007 Adobe Systems Incorporated. All Rights Reserved.
25

The Poly Library - Basics

int main()
{
 poly_copyable x(10); // Capture copy-ctor here
 poly_copyable y = x; // Use copy-ctor here
}

The overhead is exactly that of traditional inheritance
Overhead is only paid for why polymorphism is required

2007 Adobe Systems Incorporated. All Rights Reserved.
26

The Poly Library - Usage in Adobe Source Libraries

ASL provides a few special purpose poly types:

any_regular_t

All operations on the Concept Regular including O(1), non-throwing swap()

Small object optimization (small objects with non-throwing default ctor stored locally)

Leverages type promotion as well as virtualization

Most numeric types promote to double

char* promotes to std::string

GIL makes use of an any_image<> type which can be parametersed with a set of specific
types for which optimal algorithms can be instantiated

There is an any_iterator library which experiments with concept refinement and
polymorphism

The poly library incorporates many of the above ideas into a single library

2007 Adobe Systems Incorporated. All Rights Reserved.
27

The Poly Library - Usage in Adobe Source Libraries

The poly library allows client specified concept descriptions

Concept descriptions can inherit from each other to allow refinement

poly<Placable>, poly<View>, poly<Controller> are used to connect
widgets to the property model and layout libraries - each of these are
refinements of poly<Regular> which will soon replace any_regular_t.

The any_regular_t is used as the "dynamic type" for the property model
library

Allowing the client to create property models with any regular type, including using the
type in the property model language

2007 Adobe Systems Incorporated. All Rights Reserved.
28

The Poly Library - Usage in Adobe Source Libraries

struct checkbox_t
{
 typedef any_regular_t model_type;
 typedef boost::function<void (const model_type&)> setter_type;

 checkbox_t(const std::string& name,
 const any_regular_t& true_value,
 const any_regular_t& false_value,
 theme_t theme,
 const std::string& alt_text);

 void measure(extents_t& result);
 void place(const place_data_t& place_data);
 void display(const any_regular_t& value);
 void enable(bool make_enabled);
 void monitor(setter_type proc);
};

bool operator==(const checkbox_t&, const checkbox_t&);

2007 Adobe Systems Incorporated. All Rights Reserved.
29

The Poly Library - Future Directions

Learning and exploring how to assemble systems with value semantics

We do have pointers under the hood

References between objects are managed with in a container that holds the objects

All data structures are explicit

We are collaborating with Texas A&M and others to explore new techniques
and understand the theoretical limitations

Techniques such as runtime compilation (compile when the types are known) is an
interesting future direction

You can find more information on our website
http://opensource.adobe.com. Keep on eye on the Papers and Presentations
section of our wiki for current and upcoming papers.

2007 Adobe Systems Incorporated. All Rights Reserved.
30

