
Copyright 2008 Adobe Systems Incorporated.
1

Adobe Source Libraries
Overview & Philosophy

Sean Parent
Principal Scientist & Engineering Manager
Adobe Software Technology Lab

http://stlab.adobe.com

03 April 2008

Copyright 2008 Adobe Systems Incorporated.
2

Demo

Copyright 2008 Adobe Systems Incorporated.
3

Adobe Source Libraries

A collection of libraries to support application development

Research artifacts of the Adobe Software Technology Lab

Open Source: http://stlab.adobe.com/

Used by many Adobe products

Copyright 2008 Adobe Systems Incorporated.
4

Outline

Regular Types – libraries for efficiently handling regular types

Forest – advantages of explicit data structures

Layout Library – a library for placing / aligning items in an interface
and a language to express layouts

Property Model Library – describing and solving inter-related
proprerties

Copyright 2008 Adobe Systems Incorporated.
5

Goal of ASL

Express entire applications using a combination of generic and
declarative techniques

2 orders of magnitude reduction in code

Greater than corresponding reduction in defects

We are still a long way from our goal
perhaps not as far as it would appear

Copyright 2008 Adobe Systems Incorporated.
6

Approach

Generic Algorithms
Write algorithms with minimal requirements – maximum reuse

Generic Data Structures (Containers)
Containers support algorithm requirements (including complexity)

Declarative Architecture
Identify “patterns” of how components are assembled and learn to express/solve
these pattern with algorithms and data structures

Copyright 2008 Adobe Systems Incorporated.
7

Challenges

Build a Strong Foundation
See http://stepanovpapers.com/eop/lecture_all.pdf

Our work here has a strong impact on all aspects of ASL

Combine Runtime Polymorphism and Generic Programming
See http://www.emarcus.org/papers/gpce2007f-authors-version.pdf

See http://www.emarcus.org/papers/MPOOL2007-marcus.pdf

See Poly and Any Regular Libraries

Make Implicit Structure Explicit
Work ongoing – see Forest, Property Model, and Layout Libraries

Discovering the Rules that Govern Large Systems
Work ongoing – see Property Model Library and initial work on Sequence Models

Copyright 2008 Adobe Systems Incorporated.
8

Adobe Source Libraries – Regular Types

Definition: Regular

Move Library
How RVO works

Creating Polymorphic Regular Types and Poly Library

Copy On Write Library

Copyright 2008 Adobe Systems Incorporated.
9

Definition of Regular

The requirements of Regular are based on equaltional reasoning

They assure regularity of behavior and interoperability

Types which model these requirements are regular types

The properties of Regular are inherent in the machine model

Regular types exist in any correct system but formalizing the
requirements and normalizing the syntax is what enables
interoperability

All types are inherently regular

Copyright 2008 Adobe Systems Incorporated.
10

Basic Requirements of Regular Type

Requirement Syntax Example Axioms & Postconditions

Copy T x = y;
~x();

x == y
if (is_defined(modify, x)
 then modify(x); x != y

Assignment x = y; x == y
if (is_defined(modify, x)
 then modify(x); x != y

Equality x == y;
x != y;

a == b && b == c => a == c
a == b b == a
a == a

Identity &x; &a == &b => a == b
given &x == &y
if (is_defined(modify, x)
 then modify(x); x == y;

Size sizeof(T); size of local part of T

Swap swap(x, y); x’ == y; y’ == x;
O(sizeof(T)); nothrow;

Copyright 2008 Adobe Systems Incorporated.
11

Extended Requirements of Regular Type

Requirement Syntax Example Axioms & Postconditions

Default Construction T x; T x; x = y; is equivalent
T x = y;

Default Comparison std::less<T>()
 (x, y);

!op(x, y) && !op(y, x)
 => x == y

Movable x = f();
x = move(y);

O(sizeof(T)); nothrow;
T x = y; z = move(x);
 => z == y;

Area area(x); Copy and Assignment are
O(area(x));
Equality is worst case
O(area(x));

Alignment alignment(T); alignment size for type

Underlying Type underlying(T) type which can be copied to/
from T in O(size(T))

Copyright 2008 Adobe Systems Incorporated.
12

Importance of Move

Allows transfer of ownership of remote parts in small constant time

Will not throw an exception

Move does not refine Copy and Copy does not refine Move

When the source will not be used after a copy, copy can be replaced
with move

An object which has been moved from is still Regular

Reference Semantics provide move for “free”
But there are other costs

Copyright 2008 Adobe Systems Incorporated.
13

Quiz: What will the following code print?

struct object_t
{
 object_t()
 { cout << "construct" << endl; }
 object_t(const object_t&)
 { cout << "copy" << endl; }
 object_t& operator=(const object_t&)
 { cout << "assign" << endl; return *this; }
};

object_t function()
 { object_t result; return result; }

int main()
 { object_t x = function(); return 0; }

Copyright 2008 Adobe Systems Incorporated.
14

Answer: Return Value Optimization Eliminates Copies

struct object_t
{
 object_t()
 { cout << "construct" << endl; }
 object_t(const object_t&)
 { cout << "copy" << endl; }
 object_t& operator=(const object_t&)
 { cout << "assign" << endl; return *this; }
};

object_t function()
 { object_t result; return result; }

int main()
 { object_t x = function(); return 0; }

construct

Copyright 2008 Adobe Systems Incorporated.
15

Quiz: What will the following code print?

struct object_t
{
 object_t()
 { cout << "construct" << endl; }
 object_t(const object_t&)
 { cout << "copy" << endl; }
 object_t& operator=(const object_t&)
 { cout << "assign" << endl; return *this; }
};

object_t function()
 { object_t result; return result; }

void sink(object_t) { }

int main()
 { sink(function()); return 0; }

Copyright 2008 Adobe Systems Incorporated.
16

Answer: RVO Works for Parameters Also

struct object_t
{
 object_t()
 { cout << "construct" << endl; }
 object_t(const object_t&)
 { cout << "copy" << endl; }
 object_t& operator=(const object_t&)
 { cout << "assign" << endl; return *this; }
};

object_t function()
 { object_t result; return result; }

void sink(object_t) { }

int main()
 { sink(function()); return 0; }

construct

Copyright 2008 Adobe Systems Incorporated.
17

Sink Functions

A sink function is any function which consumes one or more
arguments by storing them or by returning them

By passing the argument by value and moving it into position we
allow the compiler to avoid a copy

Assignment is a sink function

Copyright 2008 Adobe Systems Incorporated.
18

Typical Assignment

struct object_t{
 object_t() : object_m(new int(0)) { }
 object_t(const object_t& x) : object_m(new int(*x.object_m))
 { cout << "copy" << endl; }
 object_t& operator=(const object_t& x)
 { object_t tmp = x; swap(tmp, *this); return *this; }
 ~object_t() { delete object_m; }

 friend inline void swap(object_t& x, object_t& y)
 { swap(x.object_m, y.object_m); }
 private:
 int* object_m;
};

object_t function()
 { object_t result; return result; }

int main()
 { object_t x; x = function(); return 0; }

copy

Copyright 2008 Adobe Systems Incorporated.
19

Better Assignment

struct object_t{
 object_t() : object_m(new int(0)) { }
 object_t(const object_t& x) : object_m(new int(*x.object_m))
 { cout << "copy" << endl; }
 object_t& operator=(object_t x)
 { swap(x, *this); return *this; }
 ~object_t() { delete object_m; }

 friend inline void swap(object_t& x, object_t& y)
 { swap(x.object_m, y.object_m); }
 private:
 int* object_m;
};

object_t function()
 { object_t result; return result; }

int main()
 { object_t x; x = function(); return 0; }

copy

Copyright 2008 Adobe Systems Incorporated.
20

Better Assignment

struct object_t{
 object_t() : object_m(new int(0)) { }
 object_t(const object_t& x) : object_m(new int(*x.object_m))
 { cout << "copy" << endl; }
 object_t& operator=(object_t x)
 { swap(x, *this); return *this; }
 ~object_t() { delete object_m; }

 friend inline void swap(object_t& x, object_t& y)
 { swap(x.object_m, y.object_m); }
 private:
 int* object_m;
};

object_t function()
 { object_t result; return result; }

int main()
 { object_t x; x = function(); return 0; }

Copyright 2008 Adobe Systems Incorporated.
21

Explicit Move

struct object_t{
 object_t(move_from<object_t> x) : object_m(0)
 { swap(*this, x.source); }

 int& get() { return *object_m; }

 //…
};

object_t function()
 { object_t result; return result; }

object_t sink(object_t x)
 { x.get() += 5; return move(x); }

int main()
 { object_t x = sink(function()); return 0; }

Copyright 2008 Adobe Systems Incorporated.
22

Polymorphism and Regular Types

Current pattern:
polymorphism => inheritance => specialized classes => limited code sharing

polymorphism => variable size => heap allocation => pointer management

polymorphism => virtual functions => slower dispatch

The requirement for polymorphism comes from the need to handle
heterogeneous types which satisfy a common set of requirement in a
homogeneous manner

Requirement is driven by the use of the type, there is nothing
inherently polymorphic about a type

Copyright 2008 Adobe Systems Incorporated.
23

Creating a Polymorphic Regular Type

struct object_t
{
 template <typename T> // T models Drawable
 explicit object_t(T x) : object_m(new model_t<T>(move(x))) { }

 object_t(move_from<object_t> x) : object_m(0)
 { swap(*this, x.source); }
 object_t(const object_t& x) : object_m(x.object_m->copy_()) { }
 object_t& operator=(object_t x) { swap(x, *this); return *this; }
 ~object_t() { delete object_m; }

 friend inline void swap(object_t& x, object_t& y)
 { using std::swap; swap(x.object_m, y.object_m); }

 friend inline void draw(const object_t& x)
 { x.object_m->draw_(); }

 private:
 // …fill in here…
 concept_t* object_m;
};

Copyright 2008 Adobe Systems Incorporated.
24

Creating a Polymorphic Regular Type

 struct concept_t
 {
 virtual ~concept_t() { }
 virtual concept_t* copy_() const = 0;
 virtual void draw_() const = 0;
 };

 template <typename T>
 struct model_t : concept_t
 {
 explicit model_t(T x) : value_m(move(x)) { }
 concept_t* copy_() const { return new model_t(*this); }
 void draw_() const { draw(value_m); }

 T value_m;
 };

Copyright 2008 Adobe Systems Incorporated.
25

Using our Poly Drawable Type

template <typename T> void draw(const T& x) { cout << x << endl; }

template <typename T> void draw(const vector<T>& x) {
 typedef typename vector<T>::const_iterator iterator_t;
 cout << "<vector>" << endl;
 for (iterator_t f(x.begin()), l(x.end()); f != l; ++f)
 { draw(*f); }
 cout << "</vector>" << endl;
}

int main() {
 vector<object_t> x;

 x.push_back(object_t(10));
 x.push_back(object_t(string_t("Hello World!")));
 x.push_back(object_t(x));
 x.push_back(object_t(string_t("Another String!")));

 draw(x);
 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
26

Results

<vector>
 10
 Hello World!
 <vector>
 10
 Hello World!
 </vector>
 Another String!
</vector>

Indenting Added for clarity

Copyright 2008 Adobe Systems Incorporated.
27

Summary

Non-Intrusive – client need only satisfy requirements

Existing types can be used in a polymorphic fashion without wrapping

Cost of virtual dispatch the same – but only required when object
used in a polymorphic setting

Client isn’t burdened by managing pointers – can use efficiently with
containers and algorithms

The Poly Library provides facilities for:
Virtualization of the properties of Regular

Refinement

Dynamic Type Information

Copyright 2008 Adobe Systems Incorporated.
28

One Final Change…

template <typename T>
void draw(const copy_on_write<T>& x) { draw(x.read()); }

int main(){
 typedef copy_on_write<object_t> cow_t;

 vector<cow_t> x;

 x.push_back(cow_t(object_t(10)));
 x.push_back(cow_t(object_t(string_t("Hello World!"))));
 x.push_back(cow_t(object_t(x)));
 x.push_back(cow_t(object_t(string_t("Another String!"))));

 draw(x);

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
29

Forest Library

STL provides sequence and associative containers and algorithms

Because the STL data types are Regular they can be composed to
create new structures

Not all structures are best represented by composition

Hierarchies can be represented through containment
as we saw with object_t

Other representations provide other advantages

Copyright 2008 Adobe Systems Incorporated.
30

Forest

Copyright 2008 Adobe Systems Incorporated.
31

Forest (full-order traversal)

Copyright 2008 Adobe Systems Incorporated.
32

Forest (pre-order traversal)

Copyright 2008 Adobe Systems Incorporated.
33

Forest (post-order traversal)

Copyright 2008 Adobe Systems Incorporated.
34

Forest (child traversal)

Copyright 2008 Adobe Systems Incorporated.
35

Forest (insert and erase)

Copyright 2008 Adobe Systems Incorporated.
36

Print as XML

template <typename T> // T models Regular
ostream& operator<<(ostream& stream, const forest<T>& x)
{
 typedef typename forest<T>::const_iterator iterator_t;
 typedef depth_fullorder_iterator<iterator_t> depth_iterator_t;

 for (depth_iterator_t f(begin(x)), l(end(x)); f != l; ++f)
 {
 for (size_t n(f.depth()); n != 0; --n) stream << "\t";
 stream << (f.edge() ? "<" : "</") << *f << ">" << endl;
 }

 return stream;
}

Copyright 2008 Adobe Systems Incorporated.
37

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
38

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
39

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
40

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
41

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
42

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
43

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
44

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
45

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

Copyright 2008 Adobe Systems Incorporated.
46

Example

int main()
{
 typedef forest<const char*> forest_t;
 typedef forest_t::iterator iterator_t;

 forest_t x;

 iterator_t i = x.insert(x.end(), "me");
 x.insert(x.end(), "brother");
 ++i;
 iterator_t j = x.insert(i, "son");
 ++j;
 x.insert(j, "grandson");
 x.insert(i, "daughter");

 cout << x;

 return 0;
}

<me>
 <son>
 <grandson>
 </grandson>
 </son>
 <daughter>
 </daughter>
</me>
<brother>
</brother>

Copyright 2008 Adobe Systems Incorporated.
47

Declarative UI with ASL

Introduction
What a User Interface Is

Identifying UI Mechanisms

What MVC Is

Property Models and Layouts Libraries

Modeling the Form

Presenting the Form

Property Model Basics
An Overview of The Property Model

Syntax

CEL expression and the Begin Inspector

Invariants & Dependency Tracking

Relationships & Logic

Layout Library Basics
An Overview of the Layout Library

Syntax

Placement and Alignment

Spacing, Margins, and Indenting

Guides

Optional and Panel

Advanced Topics
Scripting and Localization

How Layouts Work

What you can't do

How Property Models Work

What you can't do

Copyright 2008 Adobe Systems Incorporated.
48

What is a User Interface?

Discussion

Copyright 2008 Adobe Systems Incorporated.
49

What a User Interface Is

Definition: A User Interface (UI) is a system for assisting a user in
selecting a function and providing a valid set of parameters to the
function.

Definition: A Graphical User Interface (GUI) is a visual and interactive
UI.

Copyright 2008 Adobe Systems Incorporated.
50

Mechanisms to Assist the User

Discussion

Copyright 2008 Adobe Systems Incorporated.
51

UI Mechanisms

Context
Current Document, Selection, Tools, Modal Dialogs

Context Provides a Function or One or More parameters to the Function

The current item is referred to as the subject

The selected function is the verb

Sentences
subject-verb(function)-[object]

Drag and Drop, Cut/Copy/Paste

Constraints
Disabled Options, Rejecting Invalid Input, Modality

Consistency

Copyright 2008 Adobe Systems Incorporated.
52

UI Mechanisms (Continued)

Interactivity
Tracking: ≈1/30 s

Acknowledge: ≈1/5 s

Confirmation: ≈1 s

Precognition
Specifying Parameters in Terms of Desired Results:

Compress this movie to fit on a DVD

Scale this image to fit the Page

Time-Travel
Undo, Preview, Non-Destructive Editing

Metaphors
Using knowledge transference

Copyright 2008 Adobe Systems Incorporated.
53

Introduction

Demo

Copyright 2008 Adobe Systems Incorporated.
54

Model-View-Controller

View & Controller Logically
Separate

Most Descriptions get MVC
Wrong - see Design Patterns
or Smalltalk, not Apple or
Microsoft.

CMV Would be a Better Term.

Copyright 2008 Adobe Systems Incorporated.
55

Model View Controller

Copyright 2008 Adobe Systems Incorporated.
56

Model-View-Controller

Copyright 2008 Adobe Systems Incorporated.
57

Property Models and Layouts Libraries

Property Model Library is only concerned with the model portion
It is not the only way to construct a model

Layout Library is only concerned with how the view portions are
positioned in a coordinate space

Within our Layout Descriptions we'll also providing binding to connect
the widgets to the model

It is important to note that the layout library does not have any built in knowledge
about the widgets - we provide a sample set of widgets but they are not complete
implementations.

Copyright 2008 Adobe Systems Incorporated.
58

Relation to MVC

Copyright 2008 Adobe Systems Incorporated.
59

Property Model Basics

Copyright 2008 Adobe Systems Incorporated.
60

Property Model Descriptions

sheet my_sheet
{
 interface:
 team_1: "Giants";
 team_2: "Patriots";
 score_1: 0;
 score_2: 0;

 output:
 result <== {
 team_1: team_1, team_2: team_2,
 score_1: score_1, score_2: score_2 };
}

Copyright 2008 Adobe Systems Incorporated.
61

Property Model Descriptions

Interface Cells
Optional Initializer and Expression

score_1: 0 <== score_2 * 2;

Output Cells
Require Expression

result <== [score_1, score_2];

Copyright 2008 Adobe Systems Incorporated.
62

CEL Expressions

Built-In Data Types
number: -17.3

string: "Hello" ' world!'

name: @identifier

boolean: true

array: [false, "Test", @key]

dictionary: {key_1: "Value", key_2: 10}

empty: empty

Variables and Function
variable: score_1

function: max(10, score_1)
scale(m: base, x: 10, b: offset)

Copyright 2008 Adobe Systems Incorporated.
63

CEL Expressions

Operators
number: *, /, +, -

number: <, >, <=, >=

boolean: !, &&, ||

any: ==, !=

array: [number_expression]

dictionary: [name_expression], .

any: expression ? expression : expression

empty: empty

C order of Precedence

Example
{ width: 10, height: 20 }[p ? @width : @height]

Copyright 2008 Adobe Systems Incorporated.
64

Property Model Descriptions

Invariant Cells
Requires Boolean Expression

invariant:
 check <== a < b;

The pre-conditions to a function are an invariant of the functions
arguments

Cells that contribute to an invariant are poison

Cells derived from poison are invalid

Copyright 2008 Adobe Systems Incorporated.
65

Property Model Descriptions

Logic Cells
Requires Expression

logic:
 rate <== a * b;

A logic cell is simply a named expression

Relate Expression
logic:
 relate {
 a <== b * c;
 b <== a / c;
 c <== a / b;
 }

N-Way, Exactly One Expression Is Executed For A Given State

Copyright 2008 Adobe Systems Incorporated.
66

Visualizing Property Models

Copyright 2008 Adobe Systems Incorporated.
67

Mini-Image Size Example

Copyright 2008 Adobe Systems Incorporated.
68

Declarative Solution using the Property Model Library

sheet mini_image_size
{

 input:
original_width : 5 * 300;

original_height : 7 * 300;
 interface:

constrain : true;

width_pixels : original_width <== round(width_pixels);
height_pixels : original_height <== round(height_pixels);

width_percent;
height_percent;

 logic:

relate {
width_pixels <== round(width_percent * original_width / 100);

width_percent <== width_pixels * 100 / original_width;
}
relate {

height_pixels <== round(height_percent * original_height / 100);
height_percent <== height_pixels * 100 / original_height;

}
when (constrain) relate {

width_percent <== height_percent;

height_percent <== width_percent;
}

 output:
result <== { height: height_pixels, width: width_pixels };

}

Copyright 2008 Adobe Systems Incorporated.
69

Imperative Solution to Mini-Image Size

Copyright 2008 Adobe Systems Incorporated.
70

Event Flow in a Simple User Interface

Copyright 2008 Adobe Systems Incorporated.
71

Layout Library Basics

Copyright 2008 Adobe Systems Incorporated.
72

Layout Description

layout my_dialog
{
 interface:
 display : true;
 constant:
 dialog_name : "My Dialog";

 view dialog(name: dialog_name) {
 reveal(name: "Display", bind: @display);
 optional(bind: @display) {
 button(name: "OK");
 }
 }
 }

Copyright 2008 Adobe Systems Incorporated.
73

Placement and Alignment

Placement is a container property
placement: place_row, place_column, place_overlay

The containers row(), column(), and overlay() are non-creating containers with the
corresponding placement.

Alignment is a general property that applies to horizontal and vertical
horizontal: align_left, align_right, align_center, align_proportional, align_fill

vertical: align_top, align_bottom, align_center, align_proportional, align_fill

Alignment of children can be imposed from container
child_horizontal:

child_vertical:

Tip: If widgets are stuck top/left, it is likely because the container they
are in isn't using align_fill.

Copyright 2008 Adobe Systems Incorporated.
74

Spacing, Margins, Indenting

Spacing is a container property
spacing: number

spacing: array

The spacing between each element in the container

Margin is a container property
margin: number

margin: [top, left, bottom, right]

Indent is a general property
Indent: number

The indent applies to the horizontal position of an item in a column and vertical
position of an item in a row and is relative to the left or right alignment

Tip: Define meaningful constants for these elements - don't use raw
values and don't use to "fake" alignment.

Copyright 2008 Adobe Systems Incorporated.
75

Guides

Guides are Defined By Widgets (Currently)

There are (Currently) Two Guide Types: @guide_baseline,
@guide_label

Guides Propagation Can Be Suppressed:
guide_mask: [@guide_xxxx]

The default mask for columns is [@guide_baseline]

Guides Can Also Be Balanced Within A Container
guide_balance: [@guide_xxxx]

Guides only apply to items which are aligned left/right or top/bottom
or filled. Fill left or right is determined by widget (and may vary by
local).

Tip: Guides can be allowed to propagate from overlays to get consistent
column widths on tab panels.

Copyright 2008 Adobe Systems Incorporated.
76

Optional and Panel

optional() and panel() are containers whose visibility can be bound

An optional() container is removed from the layout when hidden

A panel() remains part of the layout when hidden

Tip: Use panel() with a tab_group(). A tab_group() is like a popup but is
also a container that defaults to place_overlay.

tab_group(bind: @x,
 item: [{name: "tab 1", value: @tab_1},
 {name: "tab 2", value: @tab_2}]) {
 panel(bind: @x, value: @tab_1) { /*…*/ }
 panel(bind: @x, value: @tab_2) { /*…*/ }
}

Copyright 2008 Adobe Systems Incorporated.
77

Scripting and Localization

Contributing values form the basis for intelligent recording
Difference between "fixed" values and contributing captures "intent"

Same model is used for playback - handling all script validation

Model assists script writers in the same way it assists users - letting
them specify the parameters in terms they understand

ASL contains an experimental xstring library:

button(name: localize("<xstr id='ok'>OK</xstr>"));

Copyright 2008 Adobe Systems Incorporated.
78

How Layouts Work

A layout is a container of placeable objects

When a description is parsed a hierarchy of placeable objects is stored
in the layout

The basic algorithm is:
Gather horizontal metrics of each item in the hierarchy, depth first post order

Solve the horizontal layout

Gather vertical metrics - providing final horizontal metrics

Solve the vertical layout

Place each item

Copyright 2008 Adobe Systems Incorporated.
79

How Layouts Work

Copyright 2008 Adobe Systems Incorporated.
80

How Layouts Work

Copyright 2008 Adobe Systems Incorporated.
81

Layouts must be able to be decomposed into
rows, columns, and overlays

No space filling or best fit algorithms

You can plug-in your own layouts if they can
behave as a placeable object.

What you can't do

Copyright 2008 Adobe Systems Incorporated.
82

How Property Models Work

A property model is a container of cells, relationships, views and
controllers

When the description is parsed, cells and relationships are added.

Views and controller are added from the layout description

Each cell attached to a relationship has a priority as well as a value,
priority is usually based on how recently the element changed

Copyright 2008 Adobe Systems Incorporated.
83

How Property Models Work

The basic algorithm is:
Calculate the predicates for any conditional relate clauses

Predicates cannot be involved in relate clauses

Flow the active relate clauses using the priority on the cells

After this point, the flow will be use to direct calculations

Flow and calculate run in opposite directions on the graph.

Calculate the invariants

If an invariant is false, any reached source is marked as poison

Calculate the output expressions

Reached sources are marked enabled

If a reached source is poison result is marked invalid

Calculate any remaining interface cells to which a view is attached

Copyright 2008 Adobe Systems Incorporated.
84

What you can't do

There are many other types of models that the property model library
can't handle - some of the more common ones:

Sequences (manipulating lists of elements)

Although the property model can describe invariants on the sequence and pre-
and post- conditions on the functions that manipulate it.

Grammars

The property model library is not a parser

Triggers - imperative actions

There is no way to say "when this happens do this"

The property model library cannot handle distributing values (yet)
From our exercise - there is no way to construct a UI which given a final score
calculates how many tds, field goals, and extra points are needed to reach it.

Copyright 2008 Adobe Systems Incorporated.
85

Closing Comments

Website http://stlab.adobe.com

Don't be afraid to ask questions - subscribe to our mailing list

Please contribute to ASL - our charter is to improve how software is
written - by contributing you will learn and help others

We prefer small contributions - contribute the big functions when they become
small functions leveraging the rest of the library

Revolutionizing
how the world engages

with ideas and information

