A Possible Future of
Software Development

Sean Parent

Principal Scientist & Manager
Software Technology Lab

July 25, 2007

Adobe

2007 Adobe Systems Incorporated. All Rights Reserved.



Adobe Today

Worldwide Offices
L
gy © @
() o <

o

2007 Adobe Systems Incorporated. All Rights Reserved.

Key Statistics

Adobe
FY 2006 Revenue

Adobe
Q2 2007 Revenue

Years in Business

Employees

$2.575B

$745.6M

25

6,000

Al

Adobe



Adobe Product Lines

Creative Solutions

= (Creative Suite
= Photoshop

= InDesign

= Premiere Pro
= After Effects

= Flash

= Dreamweaver

2006 Adobe Systems Incorporated. All Rights Reserved.

Enterprise & Mobile

= Acrobat

= Acrobat Connect
= LiveCycle

= Flex

= Flash Lite

= FlashCast

= Reader LE

Technologies

= Portable Document
Format (PDF)

= Reader
= Flash Player

= Postscript

2 ADOBE CREATIVE SU[TE:
% MASTER comscno&?’sv
g; Y u ,’:

Al

Adobe



Engineering Team Structure

Product Line:

= Photoshop, Acrobat, InDesign, ...

Products:

= Photoshop CS3, Photoshop CS3 Extended, Photoshop Elements, Photoshop Lightroom, ...

= Product Team:
= Developers =20
= Testers =30
= User Interface Designers =1
= Shared Technology Groups: =20

= Libraries for Vector Graphics, Type, Color, Help, Localization, XML Parsing, File Handling, etc.

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Development Process

= Process is constrained by business model

= Schedule driven, incremental development model on 18-24 month cycles
= Larger products and suites forced toward waterfall model
= Press for manuals must be reserved up to 5 months in advance
= Most products ship simultaneously for Macintosh and Windows in English,
French, German, and Japanese

= Other languages follow shortly to about 24 languages

Al

5
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



The Analysts Future

= “Best practices”, methodologies, and process are changing continuously

= Trend towards Java and C# languages

= As well as JavaScript and VisualBasic is still strong
= Java still has only a small presence on the desktop

= Object Oriented is ubiquitous
= XML growing as data interchange format
= Web services

= QOpen source

= Foundation technologies commoditized

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



The Analysts Future

= “Organizations need to integrate security best practices, security testing
tools and security-focused processes into their software development life
cycle. Proper execution improves application security, reduces overall costs,
increases customer satisfaction and yields a more-efficient SDLC.”
- Gartner Research, February 2006

= “Microsoft has been slowly moving to a new development process that will
affect how partners and customers evaluate and test its software... The new
process should help Microsoft gain more feedback earlier in the
development cycle, but it won't necessarily help the company ship its
products on time or with fewer bugs.”
- Directions on Microsoft, March 2006

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Why Status Quo Will Fail

= “I've assigned this problem [binary search] in courses at Bell Labs and IBM.
Professional programmers had a couple of hours to convert the description
into a programming language of their choice; a high-level pseudo code was
fine... Ninety percent of the programmers found bugs in their programs
(and | wasn't always convinced of the correctness of the code in which no
bugs were found).”
- Jon Bentley, Programming Pearls, 1986

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Binary Search Solution

int* binary_search(int* first, int* last, int x)
{
while (first |=1ast){
int* middle = first + (last - first) / 2;
if (*middle < x) first = middle + 1;
else last = middle;

}

return first;

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Question: If We Can’t Write Binary Search...

= Jon Bentley's solution is considerably more complicated (and slower)

= Photoshop uses this problem as a take home test for candidates

= More than 90% of candidates fail

= QOur experience teaching algorithms would indicate that more than 90% of
engineers, regardless of experience, cannot write this simple code

...then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Bugs During Product Cycle

1400

1200

1000
800
——Actual
600 —&— Original
w— New Forecast

-200

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe



Bugs During Product Cycle

All Bugs - 6/9/05

3000

2500

= = =
= o =
= L ]
(] —_ —
sBng Jo Jaqunp

a00

S0Ese
S0/38
SOVESS S
S0ded s
S0/5C/9
S¢L LS
S0/8C/S
SOvF LIS
SOVOE!
Soa it
SO/t
S¥ELE
SO/S/E
SVELIE
SO/S/E
SOFEC |
SOes L
FOYSTAEL
FOALLICL
FOALTA L
FOELSLL
FO/OC/0L
FOaLOL
FosE0L
FELE
FOFE
FOfLCrE
IR
FOFCsL
ro/oLss
FeCs

Y izl

FOVECSS
S LIS
FOf LS

54 v

10 FOEY
i FO/OZE
b pvave

Week Ending

Found ——Closed ——Total Open |

Al

Adobe

12

2006 Adobe Systems Incorporated. All Rights Reserved.



Answer: Iterative Refinement.

= Current programming methodologies lend themselves to iterative
refinement.

= We don’t solve problems, we approximate solutions.

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Writing Correct Algorithms

= Study how to write correct algorithms
= Write algorithms once in a general form that can be reused

= Focus on the common algorithms

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Generic Programming

= Start with a concrete algorithm

= Refine the algorithm, reducing it to its minimal requirements

= Clusters of related requirements are known as Concepts

= Define the algorithms in terms of Concepts - supporting maximum reuse

= Data structures (containers) are created to support algorithms

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Programming is Mathematics

= Generic Programming = Mathematics
= Semantic Requirement = Axiom
= Concept = Algebraic Structure
= Model (types model concepts) = Model
= Algorithms = Theorems
= Regular Function = Function
= Complexity .

= Refined Concept - a Concept defined by adding requirements to an existing
concept.

= monoid: semigroup with an identity element

= Bidirectionallterator: Forwardlterator with constant complexity decrement

= Refined Algorithm - an algorithm performing the same function as another
but with lower complexity or space requirements on a refined concept

Al

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe



Syntax of Concepts - According to the Standard

Concept Regular

expression return type post-condition
T(t) tis equivalent to T(t)
T(u) u is equivalent to T(u)
t.~T()
&t T* denotes address of t
&u const T* denotes address of u
Table 30 - CopyConstructable
t=u T& tis equivalent to u
Table 64 - Assignable
a== bool ==is an equivalence relation

2007 Adobe Systems Incorporated. All Rights Reserved.

Table 3 - EqualityComparable

Al

Adobe



Semantics of Concepts

A Concept is an algebraic structure formed of connected requirements

Equality is a unique equivalence relation...
Ya:a=a (reflexive)
a=b=>b = a (symmetric)

a=>b and b = c = a = c (transitive)

...connected to copy and assignment:

b — a=>a = b (copies are equal)

a=b=c,d=a,d— a= b=c (copies are disjoint)

A model of Regular supports equational reasoning with computability

Al

18
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Importance of Concepts

= Concepts enable equational reasoning about code

= Concepts can be applied to any coding style

= Generic programming is not a programming style, it is the mathematics of code

= As with mathematics, the success of this approach requires years of
individual study and organized effort by the community

Al

19
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Simple Generic Algorithm

template < typename I, //Imodels RandomAccesslterator
typename T, // T models Regular
typename O> // O models BinaryFunction on T
// requires value_type(l) ==
// precondition: o provides a strict weak ordering on T
// precondition: [first, last) is in non-decreasing order by o

I lower_bound(I first, I last, T x, O 0)
{
while (first !=1ast) {
I middle = first + (last - first) / 2;
if (o(*middle, x)) first = middle + 1;
else last = middle;

}

return first;

Al

20
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Future of Concepts

Language support for Concepts

= This is a large area of focus for the C++ committee

Learn to teach programming in terms of Concepts

Extending Concepts to runtime

= Replacing inheritance as a mechanism for polymorphism

Construct a large library of algorithms and containers

= STLis only a beginning - must be considered an example

Al

21
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Question: Is this enough
to build an application?

AAAAA



Changing Geatrs...

Al

Adobe



Conjecture: All problems
of scale become a
network problem

AAAAA



Current Design of Large Systems

= Networks of objects form implicit data structures
= Messaging among objects form implicit algorithms

= Design Patterns assist in reasoning about these systems

= Local rules which approximate correct algorithms and structures

= [teratively refine until quality is good enough

25
2007 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe



A "Generic Algorithm" for Solving Large Systems

= |dentify the components and how they connect and inter-relate

= Organize the system into a directed acyclic graph (DAG)

= Identify the algorithm in any cyclic areas, factor them into a separate algorithm and replace
that area with a node executing the algorithm

= Ensure that for all states of the system a DAG structure is maintained

= Describe similar problems as similar structures

) Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Solving a Spreadsheet

Al

27
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



A DAG Representation

A1

A2 + B1

A3

} Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Declarative Programming

= Describe software in terms of rules rather than sequences of instructions

= Rules define a structure upon which solving algorithms can operate

= Examples of non-Turing complete* systems:
= Lex and YACC (and BNF based parsers)
= Sequel Query Language (SQL)
= HTML (if we ignore scripting extensions)

= Spreadsheet

= Can be Turing complete (i.e. Prolog)

= But Turing complete systems lead us back to the complexity of algorithms

*Some of these systems are “accidentally” Turing complete or support extensions that make them Turing
complete (such as allowing cycles in a spreadsheet engine). In practice though, this can often be
effectively ignored and disallowed

§ Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Property
Model Library

Al

Adobe



Event Flow in a Simple User Interface

U" Dialog
Setup

Event
Handler

Event
Handler

Script

U'_’ Validation

Event
Handler

2006 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe



Facts:

= 1/3 of the code in Adobe’s desktop applications is devoted to event
handling logic

= 1/2 of the bugs reported during a product cycle exist in this code

) Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



If Writing Correct Algorithms is Difficult...

= ...Writing correct implicit algorithms is very difficult

= We need to study what these implicit algorithms do, and express the
algorithms explicitly on declared data structures

} Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



STLab Research: “Declarative Ul Logic”

= Definition: A User Interface (Ul) is a system for assisting a user in selecting a
function and providing a valid set of parameters to the function.

= Definition: A Graphical User Interface (GUI) is a visual and interactive Ul.

= We're starting with what it means to assist the user in providing a valid set of
arguments to a function...

Al

34
2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



STLab Research: “Declarative Ul Logic”

= We can define "valid" as a predicate which described the pre-conditions on
the set of arguments.

= There are many ways to assist - but we've focused on four common forms:
= validation
= correction
= prediction

= related values

} Al

Adobe

2007 Adobe Systems Incorporated. All Rights Reserved.



Demo

. QO

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



#import *ImagesizeContxoller.h

#import. <Foundation/NSObject .h>

#import. <AppKit/NSNibDeclarations.h>
#import. <AppKit/NSControl.h>

#import. <AppKLt/NSCell.h>

#import, <Foundation/NSHunberFormatter >
#import <Foundstion/NSWotification.h>
#import <Appkit/NSTextPield.h»

fimport <msth.b>

<stddet >

/4 Reading & text field with a formstter attached forces
the text through the formatter. +/

P TR

static double TextPield
id textrs

d ) {
id formatter = [ e 1
| textPield setPormatter: nil |;
double result = [ textField doublevalue |
[ toxtFiold setFormatter: formatter |;
roturn.
¥

/% Same logic but for integers. +/
static double TextPield unformattedIntValue(
textr

ield ) {
id formatter = [ textrield formatter ];

[
zeturn result;

/+ setting o text fisld while it is editing doesn't mamage
%o set. the text. S0, we have <o stop oditing and the

static void Textrield setDoubleValueAndFormatter(
ield,
NePormatter +formatter ) {
BOO%, wasBditing = [ textField abortBditing ;

/% 1f wo're changing the formatter, then we want to
nake sure that the display updates including the edit
£

1#( [ textField fornatter | i= formatter ) {
textPield setFormatter; formatter |;
| textPield setdoubleValue: valus - 1.0 J;
}

[ textPield setDoubleValue: value |j

1( wasEditing )
[ textpield freottant at1 i
+

/+ ame logic but with integer values. */
static void Textrield setintValueAndFormatter(
id testrield,
ey
ormatter +formatter ) {
200L vaaaditing = [ textriold abortgditing |

/+ 1f wo're changing the formatter, then we want
iy o Oy i e 0 e
field.

8 [ )
eld setPornatter: fornatter i
| R o 5 1]
¥

[ texsPield setlaevalue: valte |1

1£( waskditing )
[ ectriets sitectrests nid 1y
)

/% Here is the class declaration for the control

Hatastaos Tmowisaccntroler + Baobieot {
2 belgwerinid )
id wi 14,
id oomuun.l’mthwmsox ;
id usePercentagesBox
NeNumberFormatter +pikelFormatier_;

2007 Adobe Systems Incorporated. All Rights Reserved.

I50utlet NgNunberPormatter *percentFormatter ;
dprivate
int initialWidhPixels ;
int initialfeightPixels ;

dosble widthPercentage ;
double heightPercentage ;
500L constraizproportioas |
500L usePercentages ;

)

- (void) showkideh;

- (void) showlieight;

- (void) showall;

- (18Action) heighthction: (id)sender;

- (18Action) widthAction: (id)sender;

- (18Action) constrainproportionsAction: (id)sender;
- (18Action) usePercentagesction: (id)sender;
- (18Action) apply: (id)sender;

- (13Action) revert: (id)sender;

- (void) awakeFromyib;

tend

#implementation Inagesizecontroller
/* Update the wideh field. +/

- (void) showwidth {
if( usePercentages_ ) {

TextField lvtDc\lbleVlluaAndl‘oxuueK(
VidhPicld | vidthbezaestage
percentfornatier )

) elae

TextPield_setIntValuehsdrormatter(

idthPicld , widehPixels , pixelforsatter.

/+ Update the

- (void) showtieight {
i£( vaePercentages_ ) {
SeATield tonoouklevel sasdrocnttcec
hos holqhthxc-nuql .

(
ToxtFiold_setIntvalueAndrormatter(
hoightrield, hoight?ixels_, pixelformatter_ );

* Update width and height fields. */

- (void) showidehhndiieight (
[ =ele showkidth )
[ self showleight )

+ Update all controls. */

- (void) showAll
[ self showridthAndieight |;
[ usePercentagesBox_ setState:
usePercentages_ ? KOnstate i NSOE£State |
[ conatrainProportionsBox_ setState:
conatrainProportions_ ? NeonState : NSOffstate );

/+ Revert the
the checkbox states. */

idth and height. This w

- trold) covezenihbandalght
initialnideheixels
Videhpercontage. = 100.05

heightpixels_ = initialfeightPixels ;
heightpercentage = 100.0;

[ self showkidthAndieight |;

- (13Action) revert: ender {
[ self revertwidthAndteight |;

)

/1 Handle che apply buston by copylng over the wideh and
eight. algo sets the percentage values

Imperative Solution to Mini-Image Size

displ pexcentages, then we update. e update e (
for pixels as well in case this y rounding. * mmmex
Textrield L untorsattedutialue( sender )3
- (mheelon) aplys (1d) sender ¢ [ self heightPercentagerronpixe
Inieianidiinisds o widtisizel )
-mnmmm, 10
££( constrainproportions_ ) {
initialieightpixels = heightbixels ; widtheerceatage = heightPersentage ;
heightPercentage » 100.0; ( self widehPixelafronbercentage |

[ =elf showiideh )7
[ self showkidebndisight );

+ Handle an event from the use percentages checkbox. * J+ Trigger the text field actions in respom
changes. +/
- (1Bhction) sseercentageshetion: (id) sendes {
new: tages = [ sender state | == KaOmState; - (void) controlfextdidChange:
usepercentages_ ) { . (N8liotification *) notification {
= newvseporcentages! id sender = [ notification object )
O showmiditamdneidn 1; 8B action = [ sender action i
) if( action ) {
) tl uwv: )
octor:
-Awwjm: sonder ];
. s checkbox. )
“ )

- (1meeion) consexainproporsionshctiont (14) sender {
BOOL nevConstrainProport;
sender state 1

t up, we want to set initisl values.

Hsl)nst-ts,

ig(

sting the controller and

if( newenstrainProportions ) (
[ self reversiidehAndlieight )

sbout that here, +/

= widthPixels = 400;
5_ = heightPixels_ = 300;

outines h
ntages for width and

dle conversion between pixels
Bt

d per

[ zelf showall )
- (eoid) widkidinelatormbecosniage {

nmr

nmnnmnymn * widthpercentage_ eond
4050}

- (void) widthPercentageFxonpixels {
widehPercentage_
widthPixele_ * 100.0 / initialWidehpixels

- (o) Belghepluclabiompercentage |
ieightPixels )
floor( mmuue:quxe:, * heightPercentage
040.5 )

- (void) heightPercentageFromPixels {
heightPercentage

heightPixels_ ¢ 100.0 / initialdeightPixels ;

+ pro

25 a change to the wideh fiel

- (imhceion) widehaction: (id) sender (
HEC saeporcentages
widthpercentag
Textriola, uiformactedboublovalus( sender )i
[ selt widthpixelsPronpercentage |;

Tunbieldmomustetatiuluel sender )i
[ selt widthPercentageProPixels |;

i£( constrainProportions ) {
heightPercentage = widthPercentage ;
[ self heightPixelsFromPercentage |;
[ self showlieight )7

/+ Process a change to the height field. +/

- (1BAction) heightAction: (id) sender {
E( ) {

heightPercentage_
Toxtriold_unfornattedboublevalus( sonder );
{ self heightPixelsFronpercentage |;

37

A

Adobe



Declarative Solution using the Property Model Library

sheet mini_image_size

{

input:
original_width : 5 * 300;
original_height : 7 * 300;

interface:
constrain : true;
width_pixels :original width  <==round(width_pixels);
height_pixels : original_height <==round(height_pixels);
width_percent;
height_percent;
logic:
relate {
width_pixels <== round(width_percent * original width / 100);

width_percent <== width_pixels * 100 / original_width,;
}
relate {
height_pixels <==round(height_percent * original height / 100);
height_percent <== height_pixels * 100 / original_height;
}
when (constrain) relate {
width_percent <== height_percent;
height_percent <==width_percent;
}
output:
result <== { height: height_pixels, width: width_pixels };
}

38
2007 Adobe Systems Incorporated. All Rights Reserved.

Al

Adobe



Structure of Simple User Interface

original_width

2006 Adobe Systems Incorporated. All Rights Reserved.

width_pixels

width_percent

result

height_pixels

original_height

height_percent

constrian

39

Al

Adobe



Property Model Structure

= A bipartite graph consisting of values and relations

= Similar in structure to a spreadsheet, except directionality can be
determined at runtime based on priority of cells

= Data is flowed from higher priority cells outward to dependent cells

a link reversal algorithm is employed to resolve soft cycles
= A cell which is acting as a source (no inputs) is said to contribute
= The priority among contributing cells does not change the structure

= All permutations can be checked for hard cycles by checking each
permutation of contributing values and pruning out clusters

= Same model used for Ul, script recording, and playback

o FA\

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Property Model Primitives

/

source >
\ relation
N outputs
< >
N inputs
. 1 output
sink

conditional relation

1 ian” V\H-LH\

< - < >

/ N inputs
/ 1 output
removed if not predicate

<} = cell =<3 -

\ predicate

0 or 1 input(s)
N outputs

. FA\

2006 Adobe Systems Incorporated. All Rights Reserved. Adobe



Future of Software Development

= The property model library attacks 30% of the problem

= Estimate 85% of existing code base can be replaced with small declarations
and a small library of generic algorithms

= My gut-feeling is that we are a full 2 orders of magnitude off from the minimal expression of
any large application

= Formally describe application behavior by expressing algorithm
requirements and structure invariants

= Extend the ideas from STL to encompass richer structures

= Extend generic programming to apply to runtime polymorphism

= Replace inheritance with non-intrusive modeling

o FA\

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



More Information

= http://opensource.adobe.com

= http://stepanovpapers.com
= Specifically:

» http://www.stepanovpapers.com/eop/lecture all.pdf

= http://www.stepanovpapers.com/notes.pdf

= http://www.stepanovpapers.com/PAM.pdf

o FA\

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe



Better by Adobe>

Al

2007 Adobe Systems Incorporated. All Rights Reserved. Adobe




