
1
2007 Adobe Systems Incorporated. All Rights Reserved.

A Possible Future of
Software Development

Sean Parent
Principal Scientist & Manager
Software Technology Lab

May 16, 2007

2007 Adobe Systems Incorporated. All Rights Reserved.
2

Adobe Today

6,000Employees

25Years in Business

$649.4M
Adobe
Q1 2007 Revenue

$2.575B
Adobe
FY 2006 Revenue

Key Statistics

Worldwide Offices

Corporate Headquarters – San Jose, California

3
2006 Adobe Systems Incorporated. All Rights Reserved.

Adobe Product Lines

Creative Suite

Photoshop

InDesign

Premiere Pro

After Effects

Flash

Dreamweaver

Creative Solutions Enterprise & Mobile Technologies

Acrobat

Acrobat Connect

LiveCycle

Flex

Flash Lite

FlashCast

Reader LE

Portable Document
Format (PDF)

Reader

Flash Player

Postscript

2007 Adobe Systems Incorporated. All Rights Reserved.
4

Engineering Team Structure

Product Line:

Photoshop, Acrobat, InDesign, …

Products:

Photoshop CS3, Photoshop CS3 Extended, Photoshop Elements, Photoshop Lightroom, …

Product Team:

Developers ≈20

Testers ≈30

User Interface Designers ≈1

Shared Technology Groups: ≈20

Libraries for Vector Graphics, Type, Color, Help, Localization, XML Parsing, File Handling, etc.

2007 Adobe Systems Incorporated. All Rights Reserved.
5

Development Process

Process is constrained by business model

Schedule driven, incremental development model on 18-24 month cycles

Larger products and suites forced toward waterfall model

Press for manuals must be reserved up to 5 months in advance

Most products ship simultaneously for Macintosh and Windows in English,
French, German, and Japanese

Other languages follow shortly to about 24 languages

2007 Adobe Systems Incorporated. All Rights Reserved.
6

The Analysts Future

“Best practices”, methodologies, and process are changing continuously

Trend towards Java and C# languages

As well as JavaScript and VisualBasic is still strong

Java still has only a small presence on the desktop

Object Oriented is ubiquitous

XML growing as data interchange format

Web services

Open source

Foundation technologies commoditized

2007 Adobe Systems Incorporated. All Rights Reserved.
7

The Analysts Future

“Organizations need to integrate security best practices, security testing
tools and security-focused processes into their software development life
cycle. Proper execution improves application security, reduces overall costs,
increases customer satisfaction and yields a more-efficient SDLC.”

- Gartner Research, February 2006

“Microsoft has been slowly moving to a new development process that will
affect how partners and customers evaluate and test its software… The new
process should help Microsoft gain more feedback earlier in the
development cycle, but it won’t necessarily help the company ship its
products on time or with fewer bugs.”

- Directions on Microsoft, March 2006

2007 Adobe Systems Incorporated. All Rights Reserved.
8

Why Status Quo Will Fail

“I’ve assigned this problem [binary search] in courses at Bell Labs and IBM.
Professional programmers had a couple of hours to convert the description
into a programming language of their choice; a high-level pseudo code was
fine… Ninety percent of the programmers found bugs in their programs
(and I wasn’t always convinced of the correctness of the code in which no
bugs were found).”

- Jon Bentley, Programming Pearls, 1986

2007 Adobe Systems Incorporated. All Rights Reserved.
9

Binary Search Solution

int* lower_bound(int* first, int* last, int x)
{

while (first != last){
int* middle = first + (last - first) / 2;
if (*middle < x) first = middle + 1;
else last = middle;

}
return first;

}

2007 Adobe Systems Incorporated. All Rights Reserved.
10

Question: If We Can’t Write Binary Search…

Jon Bentley’s solution is considerably more complicated (and slower)

Photoshop uses this problem as a take home test for candidates

More than 90% of candidates fail

Our experience teaching algorithms would indicate that more than 90% of
engineers, regardless of experience, cannot write this simple code

…then how is it possible that Photoshop, Acrobat, and Microsoft Word exist?

11
2006 Adobe Systems Incorporated. All Rights Reserved.

Bugs During Product Cycle

12
2006 Adobe Systems Incorporated. All Rights Reserved.

Bugs During Product Cycle

2007 Adobe Systems Incorporated. All Rights Reserved.
13

Answer: Iterative Refinement.

Current programming methodologies lend themselves to iterative
refinement.

We don’t solve problems, we approximate solutions.

2007 Adobe Systems Incorporated. All Rights Reserved.
14

Writing Correct Algorithms

Study how to write correct algorithms

Write algorithms once in a general form that can be reused

Focus on the common algorithms

2007 Adobe Systems Incorporated. All Rights Reserved.
15

Generic Programming

Start with a concrete algorithm

Refine the algorithm, reducing it to its minimal requirements

Clusters of related requirements are known as Concepts

Define the algorithms in terms of Concepts - supporting maximum reuse

Data structures (containers) are created to support algorithms

16
2006 Adobe Systems Incorporated. All Rights Reserved.

Programming is Mathematics

Refined Concept - a Concept defined by adding requirements to an existing
concept.

monoid: semigroup with an identity element

BidirectionalIterator: ForwardIterator with constant complexity decrement

Refined Algorithm - an algorithm performing the same function as another
but with lower complexity or space requirements on a refined concept

Mathematics

Axiom

Algebraic Structure

Model

Theorems

Function

Generic Programming

Semantic Requirement

Concept

Model (types model concepts)

Algorithms

Regular Function

Complexity

2007 Adobe Systems Incorporated. All Rights Reserved.
17

Syntax of Concepts - According to the Standard

Table 3 – EqualityComparable

== is an equivalence relationboola == b

Table 64 - Assignable

t is equivalent to uT&t = u

Table 30 - CopyConstructable

denotes address of uconst T*&u

denotes address of tT*&t

t.~T()

u is equivalent to T(u)T(u)

t is equivalent to T(t)T(t)

post-conditionreturn typeexpression

Concept Regular

2007 Adobe Systems Incorporated. All Rights Reserved.
18

Semantics of Concepts

A Concept is an algebraic structure formed of connected requirements

Equality is a unique equivalence relation…

…connected to copy and assignment:

A model of Regular supports equational reasoning with computability

a :a = a (reflexive)

a = b b = a (symmetric)

a = b and b = c a = c (transitive)

b a a = b (copies are equal)

a = b = c,d a,d a b = c (copies are disjoint)

2007 Adobe Systems Incorporated. All Rights Reserved.
19

Importance of Concepts

Concepts enable equational reasoning about code

Concepts can be applied to any coding style

Generic programming is not a programming style, it is the mathematics of code

[see my talk, Concept-Based Runtime Polymorphism, tomorrow to learn how generic
programming relates to object oriented programming]

The success of this approach requires years of individual study and
organized effort by the community

2007 Adobe Systems Incorporated. All Rights Reserved.
20

Simple Generic Algorithm

template < typename I, // I models RandomAccessIterator
typename T, // T models Regular
typename O> // O models BinaryFunction on T

// requires value_type(I) == T
// precondition: o provides a strict weak ordering on T
// precondition: [first, last) is in non-decreasing order by o

I lower_bound(I first, I last, T x, O o)
{

while (first != last) {
I middle = first + (last - first) / 2;
if (o(*middle, x)) first = middle + 1;
else last = middle;

}
return first;

}

2007 Adobe Systems Incorporated. All Rights Reserved.
21

Future of Concepts

Language support for Concepts

This is a large area of focus for the C++ committee

Learn to teach programming in terms of Concepts

Extending Concepts to runtime

Replacing inheritance as a mechanism for polymorphism

[see my talk tomorrow on this topic]

Construct a large library of algorithms and containers

STL is only a beginning - must be considered an example

Question: Is this enough to build an application?

2007 Adobe Systems Incorporated. All Rights Reserved.
22

Conjecture: All problems
of scale become a
network problem

2007 Adobe Systems Incorporated. All Rights Reserved.
23

Current Design of Large Systems

Networks of objects form implicit data structures

Messaging among objects form implicit algorithms

Design Patterns assist in reasoning about these systems

Local rules which approximate correct algorithms and structures

Iteratively refine until quality is good enough

2007 Adobe Systems Incorporated. All Rights Reserved.
24

A "Generic Algorithm" for Solving Large Systems

Identify the components and how they connect and inter-relate

Organize the system into a directed acyclic graph (DAG)

Identify the algorithm in any cyclic areas, factor them into a separate algorithm and replace
that area with a node executing the algorithm

Ensure that for all states of the system a DAG structure is maintained

Bonus - write a declarative language for describing similar structures in the
problem domain

2007 Adobe Systems Incorporated. All Rights Reserved.
25

Solving a Spreadsheet

2007 Adobe Systems Incorporated. All Rights Reserved.
26

A DAG Representation

2007 Adobe Systems Incorporated. All Rights Reserved.
27

Declarative Programming

Describe software in terms of rules rather than sequences of instructions

Rules define a structure upon which solving algorithms can operate

Examples of non-Turing complete* systems:

Lex and YACC (and BNF based parsers)

Sequel Query Language (SQL)

HTML (if we ignore scripting extensions)

Spreadsheet

Can be Turing complete (i.e. Prolog)

But Turing complete systems lead us back to the complexity of algorithms

*Some of these systems are “accidentally” Turing complete or support extensions that make them Turing
complete (such as allowing cycles in a spreadsheet engine). In practice though, this can often be
effectively ignored and disallowed

2007 Adobe Systems Incorporated. All Rights Reserved.
28

Property
Model Library

29
2006 Adobe Systems Incorporated. All Rights Reserved.

Event Flow in a Simple User Interface

2007 Adobe Systems Incorporated. All Rights Reserved.
30

Facts:

1/3 of the code in Adobe’s desktop applications is devoted to event
handling logic

1/2 of the bugs reported during a product cycle exist in this code

2007 Adobe Systems Incorporated. All Rights Reserved.
31

If Writing Correct Algorithms is Difficult…

…Writing correct implicit algorithms is very difficult

We need to study what these implicit algorithms do, and express the
algorithms explicitly on declared data structures

2007 Adobe Systems Incorporated. All Rights Reserved.
32

STLab Research: “Declarative UI Logic”

Definition: A User Interface (UI) is a system for assisting a user in selecting a
function and providing a valid set of parameters to the function.

Definition: A Graphical User Interface (GUI) is a visual and interactive UI.

We’re starting with what it means to assist the user in providing a valid set of
parameters to a function…

2007 Adobe Systems Incorporated. All Rights Reserved.
33

Demo

2007 Adobe Systems Incorporated. All Rights Reserved.
34

Imperative Solution to Mini-Image Size

2007 Adobe Systems Incorporated. All Rights Reserved.
35

Declarative Solution using the Property Model Library

sheet mini_image_size
{
 input:

original_width : 5 * 300;
original_height : 7 * 300;

 interface:
constrain : true;
width_pixels : original_width <== round(width_pixels);
height_pixels : original_height <== round(height_pixels);
width_percent;
height_percent;

 logic:
relate {

width_pixels <== round(width_percent * original_width / 100);
width_percent <== width_pixels * 100 / original_width;

}
relate {

height_pixels <== round(height_percent * original_height / 100);
height_percent <== height_pixels * 100 / original_height;

}
when (constrain) relate {

width_percent <== height_percent;
height_percent <== width_percent;

}
 output:

result <== { height: height_pixels, width: width_pixels };
}

36
2006 Adobe Systems Incorporated. All Rights Reserved.

Structure of Simple User Interface

2007 Adobe Systems Incorporated. All Rights Reserved.
37

Property Model Structure

A bipartite graph consisting of values and relations

Similar in structure to a spreadsheet, except directionality can be
determined at runtime based on priority of cells

Data is flowed from higher priority cells outward to dependent cells

 a link reversal algorithm is employed to resolve soft cycles

A cell which is acting as a source (no inputs) is said to contribute

The priority among contributing cells does not change the structure

All permutations can be checked for hard cycles by checking each
permutation of contributing values and pruning out clusters

Same model used for UI, script recording, and playback

38
2006 Adobe Systems Incorporated. All Rights Reserved.

Property Model Primitives

2007 Adobe Systems Incorporated. All Rights Reserved.
39

Future of Software Development

The property model library attacks 30% of the problem

Estimate 85% of existing code base can be replaced with small declarations
and a small library of generic algorithms

My gut-feeling is that we are a full 2 orders of magnitude off from the minimal expression of
any large application

Formally describe application behavior by expressing algorithm
requirements and structure invariants

Extend the ideas from STL to encompass richer structures

Extend generic programming to apply to runtime polymorphism

Replace inheritance with non-intrusive modeling

2007 Adobe Systems Incorporated. All Rights Reserved.
40

More Information

http://opensource.adobe.com

http://stepanovpapers.com

Specifically:

http://www.stepanovpapers.com/eop/lecture_all.pdf

http://www.stepanovpapers.com/notes.pdf

http://www.stepanovpapers.com/PAM.pdf

2007 Adobe Systems Incorporated. All Rights Reserved.
41

